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Abstract

GENESIS is an existing software system for understanding and reasoning about language and vision. One of
the modules in GENESIS uses about 1000 lines of Java code representing 31 rules to turn English sentences
into a variety of more meaningful semantic representations. I reproduced the functionality of these rules
by training the existing rule-learning program UNDERSTAND with 43 human-readable examples of English
sentences and corresponding semantic representations, resulting in 18 rules. These new rules and the frame-
work for training and using them provides GENESIS with a more robust and extensible semantic parser. This
research also led me to make several improvements to UNDERSTAND, making it both more powerful and

easier to train.
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1 Context

1.1 Vision

Imagine a bird flying to the top of a tree. Perhaps you can visualize its path through the air,
perhaps you're imagining a particular color of bird, perhaps you envision a leafy, deciduous tree, and you

can even imagine the roughness of its bark.

Just reading about an event can lead our minds down many of the same avenues as actually experiencing it.
And if we actually experience something we can describe it in words to someone else, and they in turn can
experience it themselves. We can touch a mug with our eyes closed and imagine what it looks like. We can

hear a suitcase dragged across a carpet and imagine what the carpet feels like.

All of these abilities imply that our senses, including vision, speech, touch, and language, are able to share
information. When we try to think of a universal language by which these senses could converse, we need to
consider what fundamental information such a language transmits, what semantic representations it might
be made of. We then need to consider how these representations can be parsed from sensory information,
how they can be reasoned about, and how they can be transformed into other representations or back into

sensory information.

My thesis research was centered on connecting human language with some of the representations that could
form part of a ‘universal’ semantic language. Specifically, I combined the existing software system GENESIS
and the existing program UNDERSTAND such that mappings from language to semantics can be learned
by example in GENESIS. Furthermore, I used this new architecture to create a semantic parser which can

construct 11 different types of representation from English text, trained with 43 human-readable examples.

1.2 Steps

The Genesis Group at MIT has been studying and using semantic representations for years, and this thesis
is further progress in a long series of projects exploring the possibilities of interfacing language, vision, and

concise, meaningful representations.
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In particular, in this thesis I improved a software system called GENESIS. When you tell GENESIS to imagine
a bird flying to the top of a tree it creates semantic representations about the spatial path of the
bird to the tree, and the decreasing distance and appearance of contact between them. This information is

encoded in two of our basic representation types, trajectories and transitions.

1.2.1 Choosing Representations

In GENESIS, as in its predecessor BRIDGE[1], we are trying to accumulate a variety of cognitively-plausible
representations for representing the many semantic facets of reality. Indeed, at the core of GENESIS is the
GAUNTLET program, named for how a sensory input is processed by running it through the ‘gauntlet’ of
different representation experts, each one trying to extract its own specialized semantics from the input data.
These representations themselves can also be picked up by different experts, enabling translation from one

representation to another. See Figure 1 for a screenshot of GENESIS’ interface.

Choosing which representations to use is thus the first step toward our vision, because most of GENESIS deals
with particular representations. Fortunately, it has been our experience that even a few representations are
enough to represent at least some of the meaning from most English sentences, so GENESIS is already
functional, even as we continue to add new representation types to it. For a list of the representations used

in this paper, see Appendix A.

1.2.2 GENESIS’ Hard-Coded Semantic Parser

For every semantic representation we add to GENESIS, we want to be able to extract the representation
from relevant English sentences. For example, we want to be able to turn sentences about motion into

trajectories and sentences about change into transitions.

To do so, GENESIS first runs the sentence through a syntactic parser, such as the Stanford Parser[3], to go
from the linear English sentence to a somewhat more consistently-structured form. It then runs the syntactic

parse through a semantic parser which attempts to extract any of the semantic representations it can.

Currently, this semantic parser is implemented as a set of rules written in Java which transform different

sentence types into our different semantic representations in various ways. This works surprisingly well given

12
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Figure 1: GENESIS’ user interface. Given the input sentence, the semantic parser has produced the structure
shown above the sentence. The Imagine, Trajectory, Location, and Place experts have extracted semantic
representations from this structure, as indicated by markings in their widgets at the bottom of the window.
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that the rules are applied repeatedly and thus can have unexpected interactions.

The good thing about this approach is that it is completely general. The rules can be arbitrarily complex

and sophisticated, and thus any semantic parser is realizable in this way.

The downsides of this approach are that adding a new representation can be quite difficult-requiring signif-

icant time and expertise—and that the rules, being arbitrarily complex, can be hard to reason about.

1.2.3 LANCE, a Learning Semantic Parser

The desire for a semantic parser which is easy to extend and easy to reason about led to the idea of a
semantic parser which would learn about new representations by example, as opposed to by writing new

rules in Java.

LANCE [5] is a semantic parser which learns rules from examples of English sentences and semantic struc-
tures corresponding to those sentences. It uses Arch-Learning[8] to update rules based on new examples,

generalizing the rules to fit all the known examples.

LANCE was able to reproduce much of the GENESIS functionality using rules learned from 95 examples, but it

has never been fully integrated into GENESIS, and generally requires too many examples to be easily trained.

1.2.4 UNDERSTAND, an Improved Learning Semantic Parser

These shortcomings of LANCE inspired the creation of UNDERSTAND [4], another learning semantic parser.

Like LANCE, UNDERSTAND learns from examples of English sentences paired with corresponding semantic
structures. It uses several mechanisms to update rules based on new examples, the central technique being
known as Lattice-Learning. These mechanisms also allow for the use of very specific negative examples, by

correcting the particular piece of bad reasoning in an undesired output.

Figure 2 shows UNDERSTAND making a general rule from a positive example. Figure 3 shows this rule being

refined by a negative example.

14
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Figure 2: A positive example in UNDERSTAND. The syntactic parse of the input sentence bird flew is shown
above the sentence. The user has also entered an s-expression describing the desired semantic structure,
which is shown graphically above the s-expression. The rule resulting from this example is shown to the
right, where patterns determines which structures the rule will match and skeletons determines how the
rule will transform the matched structures.
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Figure 3: A negative example in UNDERSTAND. If after the positive example in Figure 2 we parse the
sentence prices increased we see that the new rule matched, producing a trajectory structure. We
only want trajectories to represent motion, however, so we click on the trajectory structure to indicate
that it is undesired, which turns its bar to pink. The frame below the sentence then shows which structure
caused the undesired transformation, and we select the part of the structure which makes the transformation
undesirable—in this case increased, because it is not a motion verb. Finally, the updated rule is shown to the
right; its patterns now require an action with the type travel, so we’ve successfully restricted trajectories
to only represent motion.
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These very specific negative examples allow UNDERSTAND to generalize very generously based on positive
examples, and thus it requires far fewer examples than LANCE to learn comparable rules. For example,
UNDERSTAND needed only 12 examples to learn rules similar to the rules learned using 95 examples in

LANCE.

1.2.5 This Thesis: Incorporating UNDERSTAND into GENESIS

UNDERSTAND was designed, at least in part, as a learning semantic parser for GENESIS, but it was not
initially integrated into GENESIS. In this thesis I integrated UNDERSTAND into GENESIS, and completely
reproduced the functionality of GENESIS’ hard-coded rules using 43 training examples, as discussed in Section

2.

This was the largest application of UNDERSTAND to date, and revealed some shortcomings of the original
program. Thus in this thesis I also improved UNDERSTAND in several ways, and suggests several other ways

it could be improved, as discussed in Section 3.

1.2.6 Next Steps: Bootstrapping, Analysis, and a New UNDERSTAND

As the representations and semantic parser in GENESIS are made progressively more expressive and robust,

many future paths begin to open.

For the semantic parser, a very interesting next step will be for it to bootstrap on its current knowledge
of English to learn to comprehend even more English, all in English. For example, if it has rules which
associate semantics to the sentence the man fell to the ground and it encounters the fact (e.g. in a
book or provided by a user) the man collapsed means the man fell to the ground, it can then learn
a new semantic rule, despite never being explicitly given the desired semantic structure. In this way, once

the semantic parser becomes sufficiently robust it will be able to learn more English on its own.

As GENESIS matures it also becomes a powerful tool for examining its own representations. Future work could
use GENESIS to explore the occurrence of our chosen representations within large corpora. This might reveal
general traits of each representation, as well as connections between them, based on their co-occurrences.

These connections, in turn, could lead to new rules for translating between associated representations.

17



Lastly, as discussed in Section 3.5, the success and power of UNDERSTAND suggests that with several signifi-
cant changes and improvements it could become an even more impressive system. This includes small gains
like smarter learning and easier training, but also fundamental changes like learning to translate both from

and to linguistic syntax, allowing semantic concepts to be re-described, potentially in a different language.

1.3 News

Using 21 positive examples and 22 negative examples, I've replaced the functionality of the approximately
1000 lines of Java code implementing GENESIS’ previous semantic rules. This process is detailed in Section

2 and Appendix A.

To accomplish this I had to improve UNDERSTAND’s interface, rule engine, and heuristics. These changes

are discussed in Section 3.

An overview of how UNDERSTAND can now be used within GENESIS is given in Appendix B.
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Question Expert Force Expert Transition Expert

Figure 4: The new dataflow in GENESIS.

2 UNDERSTAND in GENESIS

This section reviews the methods used to reproduce the functionality of GENESIS’ hard-coded semantic
parsing rules using training examples in UNDERSTAND. Completing this training also required modifications
to UNDERSTAND itself, as described in Section 3. The specific examples used and a complete list of the

semantic representations involved are given in Appendix A.

2.1 Integration with GENESIS

The hard-coded GENESIS rules were already part of a larger, functioning system, so I wanted to replace
them with the learned UNDERSTAND rules in a way that would be unnoticeable to the rest of the system.
This required that the logical interface with the new semantic parser be the same as the interface with the
old semantic parser, and that the new rules produce the same output format as the old rules, i.e. the same

semantic structures.

Replacing the old parser with the new parser was relatively easy. UNDERSTAND’s rule engine behaves just
like the hard-coded rules, taking an arbitrary structure as input and producing an output structure, so I
simply added a switch in GENESIS’ user interface allowing the new parser to be chosen. The new dataflow

is shown in Figure 4.
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The first step towards reproducing the old rules was deciding what exactly their behavior was. Thankfully this
was easy, because their author Patrick Winston had provided ample documentation as well as representative
test inputs. It’s worth noting that if this hadn’t been the case, it would have been quite difficult to determine
the behavior of the rules based solely on their Java implementation. In UNDERSTAND, on the other hand,
the set of positive training examples already is an easily-comprehended description of the behavior of the

resulting parser.

2.2 A Simple Training Discipline

UNDERSTAND is quite intuitive to use, but while training it on many examples I encountered some subtle

pitfalls, and developed some simple principles to avoid them.

2.2.1 Use Minimal Examples

The hard-coded GENESIS rules include a rule called AbsorbDeterminer, which essentially removes any de-
terminers like the and a from the input syntax, to make things simpler for the other rules. Thus a bird

flew to the tree ends up looking like bird flew to tree to all the other rules.

This approach, however, doesn’t work in UNDERSTAND, where there is no way to simply get rid of part of

the syntax, unless it is part of a larger transformation resulting in some new structure.

Thus, as in the original UNDERSTAND paper[4], one could try simply ignoring any determiners in the input
when training. Unfortunately this results in rules which, even though they don’t use the input determiners
in their output, still expect determiners in their input. So a rule trained on the bird flew would also

match a bird flew but would not match birds fly. See Figure 5 for the rule produced by this example.

It may seem reasonable to treat birds fly differently because it is a more general sort of phrase than the
bird flew, but the problem gets worse as the sentences grow. Training on the bird flew to the tree,
for example, would not only create a rule that requires two determiners, rejecting things like birds flew
to the tree, but the rule would furthermore require the two determiners to be identical, i.e. it would also

reject things like a bird flew to the tree.
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Figure 5: the bird flew causes over-fitting. Note that the rule’s pattern requires two input structures—
which in this case match the parse-links (bird, the) and (flew, bird). Thus the rule would not match
birds fly because its parse has only one parse-link.

To avoid over-fitting the examples in this way, I realized I needed to use minimal examples, which have no
extraneous information for UNDERSTAND to falsely consider important.! Thus, my training example was
bird flew, which produces a rule that applies to all of the bird flew to the tree, a bird flew to a

tree, and birds fly to trees.

For reasons like this, one should try to use minimal training examples, as part of a general training discipline.

2.2.2 Use Negative Examples First

Another simple but important tenet of training UNDERSTAND in a way that works as expected is that

negative examples for a particular sentence should be given before using that sentence in a positive example.

For instance, in Figure 6 we have already taught that birds flew should result in a trajectory, so at first
prices increased would also result in a trajectory. Thus if we give the positive example associating

prices increased with a transition, the resulting rule will match trajectories and change them into

1Certain changes to UNDERSTAND itself could also alleviate this over-fitting. See Section 3.5.5.
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Figure 6: Using a positive example first produces the wrong rule. The system has already been given a
positive example associating birds flew with a trajectory, as in Figure 2. Thus it associates prices
increased with a trajectory as well, so the positive example shown here associating prices increased
with a transition results in a rule that converts trajectories to transitions, which is not what we
want.
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Figure 7: Using a negative example first produces the right rule. The system has already been given a
positive example associating birds flew with a trajectory, as in Figure 2. Thus it associated prices
increased with a trajectory until a negative example broke this association, as in Figure 3. Lastly, the
positive example shown here associates prices increased with a transition, resulting in the desired rule
for converting certain syntax to transitions. (Note that this resulting rule is actually too general, and
would itself need to be constrained by later negative examples.)

transitions, which in general is not what we want.

In Figure 7, on the other hand, we have first provided a negative example demonstrating that prices
increased is not a trajectory, and only then do we provide a positive example associating prices

increased with a transition. The result is the desired rule mapping syntax to transitions.

2.2.3 Retry Positive Examples

A last pitfall to be avoided is that even immediately after teaching UNDERSTAND what a particular sentence
should be transformed into, the rule engine won’t necessarily transform that same sentence into the desired

structure.

For example, in Figure 8 UNDERSTAND learns a very general rule, which is able to match the example

sentence in more than one way. Thus when we try running the very example sentence we just taught it with,
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Figure 8: UNDERSTAND doesn’t always reproduce its training examples. This positive example for converting
man ate tomato to a role representation initially creates such a general rule that no distinction is made
between man and tomato in the rule’s pattern. Thus if we parse man ate tomato again we may get the
reverse of what we taught it, i.e. the role for tomato ate man. This is easily remedied with a negative
example, which constrains the rule to distinguish between subject and object.
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we may get back a different output from that which we taught it. At this point the rule can be strengthened
with a simple negative example. We should then try again to ensure that the updated rule now produces

the correct output.

Immediately refining each rule in this way avoids more complicated training later on, and thus is worth the
small effort. (It might even be a worthwhile addition to the UNDERSTAND training UI for it to automatically

re-parse the example sentence every time a rule is learned.)

Consistently following this discipline of only using minimal examples, using negative examples first, and

retrying positive examples made training UNDERSTAND very effective and intuitive.

2.3 Learning Higher-Level Representations

Using the aforementioned training discipline, most of GENESIS’ hard-coded rules were easy to replicate by
example. One exception, however, was the force representation. It provides a good example of using

UNDERSTAND to learn higher-level representations, i.e. representations that contain other representations.

The force representation describes an agent causing something to happen. This ‘something’ will itself be
a representation. For example the man pushed the couch to the wall involves the man forcing motion,

i.e. it can be encoded as a force containing a trajectory.

Teaching UNDERSTAND to deal properly with such higher-level representations can be tricky. We want the
inner representation to be able to undergo any transformations it might normally undergo, but now it should

stay within its parent higher-level representation.

In many cases you can use UNDERSTAND to develop higher-level representations in a very straightforward
way. Figure 9 shows how teaching the question higher-level representation with one positive example for
did dogs run? works as expected. Note that in choosing our training example we have used the discipline
of using minimal examples which allows the learned rule to apply to more complex sentences such as did

the dog run to the fence?.

If we try the same straightforward training approach with the force representation, we aren’t as lucky. If

we try to use a single positive example for man forced horses to run, we notice that the new rule does
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not extend to other trajectories such as the man forced the horses to run to the barn.

So what’s the difference between did dogs run? and man forced horse to run? It turns out that the
syntactic parse for did dogs run? includes the same syntactic structures as the syntactic parse for dogs run,
plus some additional structure representing did. Thus the system already knows how to pull a trajectory

out of did dogs run? even if it doesn’t yet know what to do with the did.

The syntactic parse for man forced horses to run, on the other hand, does not contain the same syn-
tactic structures as horses run, so the trajectory rules trained on things like horses run don’t find the

trajectory in man forced horses to run.

This is why the straightforward single positive example for man forced horses to run fails to create a
satisfactory rule: it results in a rule for transforming ‘raw’ syntax into a trajectory wrapped in a force,

as opposed to creating a rule for wrapping an existing trajectory in a force.

Once this problem has been clarified, the solution is simple. We use two positive examples, the first of which
teaches how to get a trajectory out the raw syntax of something like man forced horses to run, and

the second of which teaches how to wrap this trajectory in a force. This process is shown in Figure 10.

Training UNDERSTAND to deal with higher-level representations demonstrates both its power and subtlety. As
with the question representation, it can handle most higher-level representations just as easily as anything
else, and with some careful thought it is easy to train it on more complex higher-level representations like

force.

2.4 Hard-Coded Rules Versus Learned Rules

By integrating UNDERSTAND into GENESIS’ dataflow and then training it while keeping in mind the discipline
discussed above, I was able to re-produce the previous hard-coded rules with rules learned from a small list

of human-readable examples.

The hard-coded rules consist of about 1000 lines of Java code, including comments, comprising 31 rules.
The strength of the hard-coded approach is practically unlimited generality, because any code could be used.

This is also a weakness, in that the rules and their interactions can become arbitrarily complex. The other
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Figure 10: Two positive examples teach the force higher-level representation, in (a) and (b). The sentence

the man forced the horses to run to the fence is parsed in (c) through (g), using these new rules and
previously-learned rules for combining paths and trajectories.
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difficulty is that writing rules can be a difficult process, requiring time and expertise.

The learned rules consist of 21 positive examples and 22 negative examples resulting in 18 rules. The strength
of this approach is that the training is a relatively intuitive process, and produces a human-readable training
document consisting of examples not dissimilar to examples you would use to teach a human about the
particular representations. Another strength is the uniformity of the rules, all of which can be graphically
represented in the same way. This uniformity of rules is also a weakness, in that any transformation that

cannot be expressed as such a rule is simply impossible to perform in UNDERSTAND.

It remains to be seen whether UNDERSTAND’s restricted rules will be able to capture every representation we
might ever want to add to GENESIS, but the fact that I was able to reproduce all of GENESIS’ functionality

so far provides reason to be optimistic.

Of course, UNDERSTAND isn’t perfect, and even to learn the rules taught in this thesis it had to be improved
somewhat, as described in Section 3. Section 3.5 also discusses some further changes to UNDERSTAND that

might make it even more powerful.
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3 Furthering UNDERSTAND: A Further Understanding

3.1 Step-by-Step Reasoning

3.1.1 Generalizing Negative Examples

UNDERSTAND learns by example, so it is very important to be able to easily provide it with both positive
and negative feedback. The means of providing positive feedback are relatively unconstrained, because any
pair of an input structure and a ‘correct’ output structure can be provided as a positive training example.

Negative examples, however, must refer to a specific point at which UNDERSTAND’s reasoning was incorrect.

Thus for negative examples it is important to be able to access and refer to as much of the reasoning used by
the rule engine as possible. For example, suppose we train UNDERSTAND to generate a transition describing
the decrease in distance between two objects every time it sees a trajectory saying that one object moved
towards the other. Thus the bird flew to the tree would be transformed first into a trajectory and

then into a transition representing the distance between the bird and the tree decreased.

Furthermore, suppose that the trajectory rules were not yet fully trained, and in particular the man
appealed to the court will also be transformed into a trajectory. Normally this would easily solved by
a simple negative example. But now this intermediate failure is hidden because the final output produced by
UNDERSTAND is a transition representing the distance between the man and the court decreased.
We can’t make a negative example from this transition because that would modify our new rule mapping

trajectories to transitions, which is not actually the rule at fault.

Thus we need a way to construct a negative example on the intermediate trajectory structure that is no
longer visible in the final output. This sort of scenario may sound contrived, but in my experience it happens
more and more as the number of rules and examples grows. Being able to step the rule engine back and

forth allows us to easily solve the problem.
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3.1.2 Implementing Stepping

In the original implementation of UNDERSTAND’s training interface, negative examples could only be based
on structures in the final output. In creating a full GENESIS rule-set, however, I came upon situations like

the example above, where I needed to correct the engine for a mistake that was no longer visible.

Thus one of my additions to the system is the ability to step through each iteration of the rule engine,

allowing negative examples to be based on any intermediate structure.

This is implemented by modifying the rule engine to store the cause of each universe. This cause consists of

the previous universe that the new universe was created from, and, for reference, the rule that created it.

Once these causes were stored, I added standard temporal navigation buttons to the training interface: <<
rewinds to the initial universe, i.e. the syntactic parse, < steps back one iteration, to the cause of the current
universe, > steps forward one iteration, and >> displays the final output universe. This user interface can be

seen in Figures 2 and 3.

In addition to enabling more powerful negative examples, step-by-step processing is also immensely useful for
analyzing and reasoning about what the rules are actually doing and how they are interacting. For example,
it lets us watch the progression of transformations involved in processing complex sentences, which was used

to make Figures 9 and 10.

3.2 Finding the Right Heuristic for Finding the Right Result

The rule engine computes all possible applications of rules, resulting in multiple ‘universes’ of structures. A
universe is simply a collection of root-level structures such as parse links, representations, or a combination
of both. When it has applied every possible series of rules, however, it chooses a particular ‘best’ universe
to return to the user. This is done using a heuristic which, based on structural properties and potential

‘priming’ in favor of certain outcomes, compares universes and chooses the maximal one.

The original heuristic used was called DEEPEST-AVERAGE. To compute the score for a given universe, it
computes the depth of each structure in the universe and averages them. This emphasizes deep structures and

few structures. In particular, any un-processed structures left from the original English parser are assigned
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Figure 11: Using the DEEPEST-AVERAGE heuristic, universe B would be chosen over universe A.

a depth of zero, dramatically reducing the average depth of the universe.

In Figure 11 for example, using the DEEPEST-AVERAGE heuristic, universe B would be chosen over universe

A.

While writing the full set of GENESIS rules, I began to realize that, at least for these rules, this heuristic was
not ideal. There’s no question that ‘raw’, ‘undigested’ structures from the English parser should reduce the
score of the universe that contains them, but DEEPEST- AVERAGE seems to over-emphasize this consideration,
making it quite unlikely that a universe with any undigested structures will ever be chosen as the final
structure. As in the example above, however, and in many of the GENESIS rules, this results in the wrong

output.

Thus I implemented a new heuristic, which T’ll call DEEPEST-HEAVIEST-THINNEST, which emphasizes the
desirable traits of GENESIS representations, while still achieving the main goal of DEEPEST-AVERAGE, i.e.

to discourage undigested structures.

DEEPEST-HEAVIEST-THINNEST is relatively simple, and almost completely described by its name. It chooses
the universe with the greatest depth. This is different from the greatest average depth, in that it is not
decreased by the shallower structures in the universe, as was the case for DEEPEST-AVERAGE in Figure 11.

In Figure 11, DEEPEST-HEAVIEST-THINNEST would choose universe A because it is deeper than universe B.

When there are two universes with the same depth, which is very common with our representations, the

heaviest is chosen, i.e. the one with the most nodes in its structure. Just as DEEPEST-AVERAGE treated
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Figure 12: The derived keyword enables UNDERSTAND to modify threads. Thus structure (a) is equivalent
to structure (b).

raw syntactic structures as having zero depth, DEEPEST-HEAVIEST-THINNEST treats them as having zero

weight. Thus unparsed syntax is still discouraged, but less strongly.

Lastly, if two universes have both the same depth and the same weight, then the thinnest is chosen, i.e. the

one with the fewest root structures. This prefers one large representation to several smaller ones.

3.3 Using the derived Keyword to Modify Threads

One of my primary goals while integrating UNDERSTAND into GENESIS was to make the switch between
the existing hard-coded rules and the new learned rules essentially invisible to the rest of the system. In

particular, I wanted the output of my rules to be indistinguishable from the output of the old rules.

GENESIS’ hard-coded rules, however, do one thing that was initially completely unsupported by UNDER-
STAND, which is that they modify threads. Threads|[7] are the type vectors used in our representations and

on which UNDERSTAND’s Lattice-Learning operates to learn about what types a rule can be applied to.

For example, flew is assigned the simple thread, taken from WordNet[6], action travel flew. When
GENESIS’ hard-coded rules transform the bird flew to a trajectory they change the thread of flew in

the output structure to action trajectory travel flew so that flew now represents a trajectory.

There is no syntax for this sort of change in UNDERSTAND, so I implemented special treatment for the
keyword derived such that wrapping a structure with the thread derived <new-type> around another
structure results in <new-type> being added to the thread of the inner structure. For example, Figure 12

shows the use of derived to represent the trajectory corresponding to the bird flew.
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The implementation of the derived keyword actually involved no modifications to UNDERSTAND at all.
Instead, there is simply a translator which collapses all of the derived structures and performs the thread
modification just before the rest of GENESIS sees the output of UNDERSTAND. A better solution would

probably involve new syntax for UNDERSTAND, as discussed in 3.5.4.

3.4 Multiple Parsers

Recently, GENESIS incorporated a new English-language parser, the START parser.[2] The output of START

is already very semantically-oriented, in sharp contrast to the syntactic output of the Stanford parser.

I modified the UNDERSTAND program to support both parsers. This required no modification to the rule
engine itself, because it can deal with any structured input, and thus has no bias towards the Stanford parser
over START. The only necessary modifications were interface additions for choosing a parser, and file-format

changes for remembering which parsers were used for which training data.

Of course, the learned GENESIS rules expect Stanford parser input structures, so the START parser input
isn’t matched by any of the old rules. There are two approaches to incorporating START into GENESIS, such
that the rules know how to go from START inputs to our semantic representations. The obvious way is to
create training examples very similar to those used for learning the rules for the Stanford parser, resulting

in two subsets of rules, one for each parser.

The other, perhaps more interesting, approach is to write rules for translating from the START input syntax
to the Stanford input syntax. This is somewhat like ‘translation’ from an unknown foreign language (START
syntax) to an understood language (Stanford parser syntax), enabling a system to understand the unknown

language, but only via the known language, as opposed to directly.

Figure 13 shows an example of how this translation could work in UNDERSTAND.

3.5 Recommendations

Integrating UNDERSTAND into GENESIS confirmed the impressive capabilities of the system, but also revealed

several subtle shortcomings. In this thesis I resolved the needs for step-by-step observation of the rule
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Figure 13: Translating between different syntactic parsers. We first train UNDERSTAND to translate the
START parser syntax for birds fly to the Stanford parser syntax, in (a). We then load all of the semantic
rules we've already written for the Stanford parser (not shown). Now when we input dogs run using
START, UNDERSTAND executes steps (b) through (d). Thus we have semantically parsed a trajectory with
the START parser, despite having never trained any semantic rules using the START parser.
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engine and a better heuristic for choosing final parses. But my experience applying UNDERSTAND to a
substantial problem has suggested several further ways in which the program could be improved. Thus a small

contribution of this thesis is the following set of informed recommendations for improving UNDERSTAND.

3.5.1 Multiple Outputs

There are many sentences which should result in multiple semantic representations. For example, the car
drove into the tree might lead UNDERSTAND’s rule engine to two different universes, one containing a
trajectory of the car’s motion, the other containing a transition describing the decrease in distance
between the car and tree, followed by the appearance of contact. In this case it would be ideal for both

universes to be chosen for the final output.

Because the heuristic decides what is chosen for final output, choosing multiple outputs would require a

different heuristic or different use of heuristics, as discussed below.

3.5.2 A Better Heuristic

The fact that I had to implement a new heuristic for UNDERSTAND to properly implement GENESIS’ rule
system suggests that the current design is too dependent on its particular heuristic. Thus we should seek
either a ‘better’ heuristic which almost always chooses the right output, or a more permissive heuristic which

allows multiple universes to be chosen for output.

It seems unlikely that there is a ‘generally better’ static way to judge semantic structures. Perhaps the
best candidates would be based on information content (e.g. minimum description length), because most
representations will probably try to lose as little information as possible while adding structure. Even this

assumption, however, depends somewhat on the design of the semantic representations.

So for UNDERSTAND to work with any structures, a learning heuristic might be the only way to accomplish
the behavior desired by the designer of the representation structures. The training data for a learning
heuristic are already provided: it could use the very same examples that the rule engine is already being
given. It is already the case that even immediately after providing UNDERSTAND with an input/output

pair in the form of a positive example, it can produce a different output given the same input, because the
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heuristic ends up preferring a different rule than the one that was just learned. This is a perfect moment for

a learning heuristic to update itself, to ensure that the desired output is chosen instead.

If a consistently ‘better’ heuristic proves evasive, or for other reasons as discussed above, it might be desirable

for UNDERSTAND to allow multiple universes as output.

For example, one of the many possible approaches to this problem would be to use 2-means clustering on
the heuristic scores. This would group universes into two clusters: those chosen for output (which would
always include the highest-scoring universe) and those not shown as output (which under most heuristics

would always include the original ‘raw’ syntactic parse).

3.5.3 ...or No Heuristic

Of course, an even simpler way to allow multiple outputs is to have no heuristic at all, and output every
universe generated by the rule engine. This essentially shifts the burden of choosing the desired representation

to the user of UNDERSTAND, allowing tailor-made heuristics to be applied to their particular structures.

In GENESIS in particular, this latter option of no heuristic may actually be the best approach. This is
because GENESIS already has multiple ‘expert’ modules looking for particular representations; anything that
no expert wants is ignored. Thus no undesired structures would be consumed, but no desired structures

would be blocked by UNDERSTAND’s built-in heuristic.

3.5.4 Syntax for Modifying Threads

As discussed in Section 3.3, I introduced the derived keyword to enable UNDERSTAND rules to modify
threads. This approach is an expedient however (read: hack), so a true addition to the UNDERSTAND syntax

would be preferable.

This could be accomplished by adding thread functions to the existing s-expression syntax used in the
program. For example, adding the type trajectory to the thread for flew might look like:
(d (+ "trajectory" flew) ...)

This would be equivalent to what would currently be written as:
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(d "derived trajectory" (d flew ...))

3.5.5 Smarter Patterns and Sameness Constraints

After a rule is created, the only parts of it that are updated by new examples are the threads it matches
against. This does an extremely good job at refining precisely which sorts of verbs, nouns, and representations

a rule should apply to.

The remaining parts of the rule, however, are never changed after they are first created by a positive example.
These remaining parts include the structure of the rule’s patterns, which determine what input structures
match the rule, and the rule’s sameness constraints, which further filter the possible inputs by ensuring that

certain parts of the input structure are the same as other parts of the input structure.

Often these input constraints work very well, but sometimes they over-fit the rule to the initial example that
created the rule. For example, as discussed in Section 2.2.1, if the word the occurs in more than one place
in the input sentence, then a sameness constraint will be established that requires two of the same articles to
appear. Thus a rule trained on the bird flew to the tree would also match a bird flew to a tree
but not a bird flew to the tree. Indeed, these ‘greedy’ sameness constraints are one of the main reasons

for the need to use minimal examples, as espoused in Section 2.2.1.

Over-fitting to one example is perfectly reasonable behavior, but adding the ability for further examples
to change the patterns and sameness constraints of rules could potentially make UNDERSTAND even more

powerful and an even faster learner.

3.5.6 Two-way Transformations

Positive examples in UNDERSTAND are essentially equivalences, saying that, e.g. a particular English sentence
is equivalent to a particular semantic structure. Thus it would be reasonable, given the semantic structure,

to produce the English sentence.

In particular, every training example could be run once in each direction, producing two rules.

One intriguing application of this might be to machine translation—if you have examples connecting a common
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semantics to two different languages, you could then do something like the following: given English syntax,
the English rules would transform it into a semantic representation, which the reverse-Chinese rules would
then transform into Chinese syntax. Thus with a good enough English parser and a good enough Chinese

parser you could create a English-to-Chinese translator.
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4 Contributions

In this thesis I made several different contributions, all centered around semantic parsing in the GENESIS

system.

4.1 Improved GENESIS

I improved the GENESIS system by replacing its hard-coded semantic parser rules with new rules based on
human-redable examples. These new rules are easier to extend and easier to comprehend because they are
based on English examples and all fit into a restricted form that can be examined graphically. Specifically,
43 examples were used to generate 18 rules, replacing about 1000 lines of Java code implementing the old

rules.

The integration of UNDERSTAND into GENESIS and the issues involved in training the new semantic parser

are discussed in Section 2. The specific examples used are given in Appendix A.

4.2 Improved UNDERSTAND

I improved the UNDERSTAND program in four ways. I gave UNDERSTAND the ability to step through each
stage of a semantic parse, enabling the creation of more specific examples. I improved the heuristic used to
determine the final output of the parser. I gave rules the new ability to modify the threads, i.e. the types,

of objects being parsed. Lastly, I added support for the START syntactic parser.

These improvements are detailed in Section 3.

4.3 Elucidated Training Methods

I provided a thorough discussion of the difficulties encountered while training GENESIS’ new semantic parser,
and documents the solutions to these problems. In particular, I proposed a simple discipline for training
UNDERSTAND in a way that avoids complex problems as the system learns more and more rules. Another

contribution is a guide to using the new software, detailing the workflow for adding new rules to GENESIS.
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The discipline used for training GENESIS’ new semantic parser is given in Section 2. The process of adding

new rules to GENESIS is laid out in Appendix B.

4.4 Pointed to Future Work

I provided several goals for the next version of UNDERSTAND, as well as some vision for the next steps in
semantic representation research. Using UNDERSTAND to create a full semantic parser in an existing system
allowed me to notice several ways in which UNDERSTAND could be made more powerful and useful. Working

with GENESIS led me to speculate on the some of the potential research that could be conducted using it.

The recommended improvements to UNDERSTAND are given in Section 3.5. Some pointers to future work in

GENESIS are provided in Section 1.2.6.
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A Semantic Representations and UNDERSTAND Examples

This appendix details the specific semantic representations used in this thesis and provides the specific

training examples used to build a semantic parser for handling these representations.

A.1 Semantic Representations Used in GENESIS

This section lists the 11 different semantic representations currently supported by the semantic parser built

in this thesis. These representations appear throughout the training examples given in the next section.

Each representation is briefly described and then an example structure (usually based on a positive example

from the next section) is shown. They are given in the order they were taught in.

More semantic representations are already being added to GENESIS. As new representations are added, it
is relatively easy to train the semantic parser with a few new examples to enable support for these new

representations.

A classification simply represents a definition of an unknown word.
For example, a Bouvier is a dog corresponds to:
classification

bouvier
3523 thing unknownWord bouvier

dog
3524 thing entity physical-entity ol
3525 thing classification

A pathFunction represents part of a spatial path.
For example, above the top of the house corresponds to:

pathfunction
above
at
top
house
I 3574 thing entity physical-entity objec
3575 thing entity physical-e
3576 thing at
3577 thing part-of-speech

3578 derived pathfunction

A state represents a current fact.
For example, the Bouvier is in the house corresponds to:
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state
I bouvier

3639 thing unknownWord bouvier

location

pathfunction
in
| at
3637 thing part-of-speech par

3638 derived pathfunction
3640 thing location
3641 thing state

A trajectory represents an object moving along a path.

For example, the boy ran from the house to the tree corresponds to:

trajectory
ran

boy
3847 thing antity phyiical-ansity okt whals live

path

pathfunction
1871 durived pathhuncicn
pathfunction
fram
at
R
Bl rt-ci-apaach part-of-a peech-in from

3842 denived pathiuncian

3B7Z thung path

3873 action trawvel travel-rapidly run ran

3874 derived trajectory

A transition represents a change, such as a decrease or increase or appearance or disappearance.
For example, the bird disappeared corresponds to:
transition

disappeared
bird

4038 thing entity physic:
4039 action disappear di
4040 derived transition

A cause represents causality or temporal relation. It is a higher-order representation, in that it can contain
other representations.

For example, the robin disappeared because the kestrel flew over the tree corresponds to:
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because
trajectory

Hew
et
ALTL thing sty praiical-sncey oby sct whok

‘ 4172 thing path

4172 action travel fiy flew

4174 derivved trajeciany

transition
disappeared
rakin

Al g ey phaical-antey oy sct whob

2197 actian disappear disappeared

4198 derwved transmsan

4272 thing part-of-speech part-of-

A question is a simple higher-order wrapper representation for inquiring about the truth of another repre-
sentation.

For example, did the dog run? corresponds to:

question

did

‘ trajectory

run
dog
path
4567 action travel travel-ra
4568 derived trajectory
4569 action make do did

4570 derived question

An imagine is a simple higher-order wrapper representation for asking GENESIS to imagine a particular
scenario.
For example, imagine the dog jumped corresponds to:
imagine
trajectory
jumped
I dog

4613 thing entity physical-enti

I path

4614 thing path
4615 action move jump j

4616 derived trajectory
4617 action make create

A describe is a simple representation for asking GENESIS to describe something.
For example, describe birds corresponds to:

describe
birds

4642 thing
4643 action

A force represents an agent forcing something to happen. It is a higher-order representation because that
‘something’ can be any other representation.
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For example, the dogs forced the cats to run corresponds to:

forced
dogs
4731 thing entity physical-en
trajectory
run

cats
4723 thing entity physical-en'

I path

4724 thing path
4725 action travel trave

4726 derived trajectory
4732 action induce con

A.2 Complete Training Examples for UNDERSTAND

This section includes the complete list of training examples used to create GENESIS’ new semantic parser.
The positive examples are very human-readable, because they were directly entered by a human. The
negative examples, on the other hand, are much more verbose because they were entered via UNDERSTAND's

graphical user interface.

All of the English is preceded by the tag 1p: which indicates to UNDERSTAND that the Stanford link-parser

should be used for the syntactic parsing.

The following text can be loaded as a file into UNDERSTAND to create the semantic parser described in this

thesis:

Positive
1lp: Bouvier is dog
(r "thing classification" (t bouvier) (t dog))

Positive
1p: in house
(d "derived pathFunction" (d in (d "thing at" (t house))))

Negative
lp: in the house
(D "derived pathfunction"
(D "thing entity physical-entity object whole artifact structure housing dwelling house"
(D "thing at" (T "thing part-of-speech part-of-speech-dt the"))))
(R "thing parse-link determiner"
(T "thing entity physical-entity object whole artifact structure housing dwelling house")
(T "thing part-of-speech part-of-speech-dt the"))
(T "thing entity physical-entity object whole artifact structure housing dwelling house")
(T "thing part-of-speech part-of-speech-dt the")

Positive
1p: bouvier is in house
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(r "thing state" (t bouvier) (s "thing location" (* pathFunction)))

Negative
1p: bouvier ran in house
(R "thing state" (T "thing unknownWord bouvier") (S "thing location"
(D "derived pathfunction" (D "thing part-of-speech part-of-speech-in in" (D "thing at"
(T "thing entity physical-entity object whole artifact structure housing dwelling
house"))))))

(T "action travel travel-rapidly run ran")

Positive
lp: above top of house
(d "derived pathFunction" (d above (d at (d top (t house)))))

Negative
1p: above top in house
(D "derived pathfunction" (D "thing part-of-speech part-of-speech-in above"
(D "thing at" (D "thing entity physical-entity object location region top"
(T "thing entity physical-entity object whole artifact structure housing dwelling house")))))
(T "thing part-of-speech part-of-speech-in in"

Positive
1p: boy ran
(d "derived trajectory" (r ran (t boy) (s "thing path")))

Negative

1p: boy is

(D "derived trajectory" (R "action be is"
(T "thing entity physical-entity object whole living-thing organism person male male-child boy")
(S "thing path")))

(T "action be is")

Negative

1p: boy ran to tree

(D "derived trajectory" (R "action travel travel-rapidly run ran"
(T "thing part-of-speech part-of-speech-to to") (S "thing path")))

(R "thing parse-link prepositional-modifier" (T "action travel travel-rapidly run ran")
(T "thing part-of-speech part-of-speech-to to"))

(T "thing part-of-speech part-of-speech-to to")

Negative
lp: boy ran to tree
(R "thing state"
(T "thing entity physical-entity object whole living-thing organism person male male-child boy")
(S "thing location" (D "derived pathfunction" (D "thing part-of-speech part-of-speech-to to"
(D "thing at"
(T "thing entity physical-entity object whole living-thing organism plant vascular-plant
woody-plant tree"))))))
(T "action travel travel-rapidly run ran")

Positive
1p: boy ran to tree

(d "derived trajectory" (r ran (t boy) (s "thing path" (* pathFunction))))

Positive
lp: boy ran from house to tree
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(d "derived trajectory"
(r ran (t boy) (s "thing path" (d "derived pathFunction" (* from)) (* pathFunction))))

Positive
1p: vase fell off of shelf
(d "derived trajectory" (r fell (t vase) (s "thing path" (d off (* at)))))

Positive
lp: vase fell off shelf
1p: vase fell off of shelf

Negative
lp: the boy ran from the house to the tree
(D "derived trajectory" (R "action travel travel-rapidly run ran"
(T "thing entity physical-entity object whole living-thing organism person male male-child boy")
(S "thing path" (D "thing part-of-speech part-of-speech-to to" (D "thing at"
(T "thing part-of-speech part-of-speech-in from"))))))
(R "thing parse-link prepositional-modifier" (T "action travel travel-rapidly run ran")
(T "thing part-of-speech part-of-speech-to to"))

Positive
1p: bird appeared
(d "derived transition" (d appeared (t bird)))

Negative
lp: bird is
(D "derived transition" (D "action be is"
(T "thing entity physical-entity object whole living-thing organism animal chordate vertebrate
bird")))
(T "action be is")

Negative
1p: bird looks
(D "derived transition" (D "action look looks"
(T "thing entity physical-entity object whole living-thing organism animal chordate vertebrate
bird")))
(T "action look looks")

Positive
lp: bird disappeared
(d "derived transition" (d disappeared (t bird)))

Negative
lp: robin disappeared because kestrel flew over tree
(D "derived trajectory" (R "action travel fly flew"

(T "thing entity physical-entity object whole living-thing organism animal chordate vertebrate

bird bird-of-prey hawk falcon sparrow-hawk kestrel")
(S "thing path" (D "thing part-of-speech part-of-speech-in because" (D "thing at"
(T "thing entity physical-entity object whole living-thing organism plant vascular-plant
woody-plant tree"))))))

(T "thing part-of-speech part-of-speech-in because")
(R "thing parse-link marker" (T "action travel fly flew")

(T "thing part-of-speech part-of-speech-in because"))

Positive
lp: robin disappeared because kestrel flew
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(r because (* trajectory) (* transition))

Negative
1p: robin disappeared because kestrel appeared
(R "thing entity physical-entity object whole living-thing organism animal chordate vertebrate
bird bird-of-prey hawk falcon sparrow-hawk kestrel"
(D "derived transition" (D "action be look appear appeared"
(T "thing part-of-speech part-of-speech-in because")))
(D "derived transition" (D "action disappear disappeared"
(T "thing entity physical-entity object whole living-thing organism animal chordate vertebrate
bird passerine oscine thrush robin"))))
(R "thing parse-link nominal-subject" (T "action be look appear appeared")
(T "thing entity physical-entity object whole living-thing organism animal chordate vertebrate
bird bird-of-prey hawk falcon sparrow-hawk kestrel"))
(T "thing entity physical-entity object whole living-thing organism animal chordate vertebrate
bird bird-of-prey hawk falcon sparrow-hawk kestrel")

Negative

1p: robin disappeared because kestrel appeared

(D "derived transition" (D "action be look appear appeared"
(T "thing part-of-speech part-of-speech-in because")))

(T "thing part-of-speech part-of-speech-in because")

(R "thing parse-link marker" (T "action be look appear appeared")
(T "thing part-of-speech part-of-speech-in because"))

Positive
lp: dog jumped
(d "derived trajectory" (r jumped (t dog) (s "thing path")))

Positive
1p: did dog run
(d "derived question" (d did (* trajectory)))

Positive
lp: imagine dog jumped
(d imagine (* trajectory))

Positive
1p: describe birds
(d describe (t birds))

Negative
1p: elaborate the birds
(D "action act interact communicate inform explain clarify elaborate"
(T "thing entity physical-entity object whole living-thing organism animal chordate vertebrate
bird birds"))
(T "action act interact communicate inform explain clarify elaborate")

Negative
lp: did contact appear after the bird flew
(D "action be look appear" (D "derived trajectory" (R "action travel fly flew"
(T "thing entity physical-entity object whole living-thing organism animal chordate vertebrate
bird")
(S "thing path"))))
(R "thing parse-link adverbial-clause-modifier" (T "action be look appear")
(T "action travel fly flew"))
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Positive
lp: dogs forced cats to run
1p: cats run

Negative
1lp: dogs forced cats to run
(D "derived trajectory" (R "action travel travel-rapidly run"
(T "thing entity physical-entity object whole living-thing organism animal chordate vertebrate
mammal placental carnivore canine dog dogs")
(S "thing path")))
(R "thing parse-link nominal-subject" (T "action induce compel coerce force forced")
(T "thing entity physical-entity object whole living-thing organism animal chordate vertebrate
mammal placental carnivore canine dog dogs"))

Positive
1p: dogs forced cats to run
(r forced (t dogs) (* trajectory))

Negative
lp: bird flew because dog appeared
(R "action be look appear appeared" (T "thing part-of-speech part-of-speech-in because")
(D "derived question" (D "action be look appear appeared" (D "derived trajectory"
(R "action travel fly flew"
(T "thing entity physical-entity object whole living-thing organism animal chordate vertebrate
bird")
(S "thing path"))))))
(T "thing part-of-speech part-of-speech-in because")
(T "action be look appear appeared")
(R "thing parse-link marker" (T "action be look appear appeared")
(T "thing part-of-speech part-of-speech-in because"))

Negative
1p: bears forced the fish to go
(R "thing classification" (T "thing part-of-speech part-of-speech-dt the")
(T "thing entity physical-entity object whole living-thing organism animal chordate vertebrate
aquatic-vertebrate fish"))
(R "thing parse-link determiner"
(T "thing entity physical-entity object whole living-thing organism animal chordate vertebrate
aquatic-vertebrate fish")
(T "thing part-of-speech part-of-speech-dt the"))
(T "action travel go")
(R "thing parse-link infinitival-modifier"
(T "thing entity physical-entity object whole living-thing organism animal chordate vertebrate
aquatic-vertebrate fish")
(T "action travel go"))

Positive

1p: bears forced the fish to go
1p: fish go

Negative

lp: contact appeared between ball and block
(R "thing state"
(T "thing entity abstraction psychological-feature event act action interaction contact")
(S "thing location" (D "derived pathfunction" (D "thing part-of-speech part-of-speech-in between"
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(D "thing at"
(T "thing entity physical-entity object whole artifact instrumentality equipment game-equipment
ball"))))))

(T "action be look appear appeared")

Positive
1p: contact appeared between ball and block
(d "derived transition" (d appeared (r contact (t block) (t ball))))

Positive
lp: ball touched block
1p: contact appeared between ball and block

Negative
1p: ball passed block
(D "derived pathfunction" (D "thing part-of-speech part-of-speech-in between" (D "thing at"
(T "thing entity physical-entity object whole artifact instrumentality equipment game-equipment
ball"))))
(T "action travel pass passed")

Negative
1p: why did the ball touch the block
(D "derived pathfunction" (D "thing part-of-speech part-of-speech-in between" (D "thing at"
(T "thing part-of-speech part-of-speech-wrb why"))))
(R "thing parse-link nominal-subject" (T "action touch")
(T "thing entity physical-entity object whole artifact instrumentality equipment game-equipment
ball"))
(T "thing part-of-speech part-of-speech-wrb why")
(R "thing parse-link adverbial-modifier" (T "action touch")
(T "thing part-of-speech part-of-speech-wrb why"))

Negative

lp: man described

(D "action act interact communicate inform explain clarify elaborate set-forth describe described"
(T "thing entity physical-entity object whole living-thing organism person male man"))

(R "thing parse-link nominal-subject"
(T "action act interact communicate inform explain clarify elaborate set-forth describe described")
(T "thing entity physical-entity object whole living-thing organism person male man"))

Negative
lp: bird flew to see
(D "derived question" (D "action perceive see" (D "derived trajectory" (R "action travel fly flew"
(T "thing entity physical-entity object whole living-thing organism animal chordate vertebrate
bird")
(S "thing path")))))
(R "thing parse-link xclausal-complement" (T "action travel fly flew") (T "action perceive see"))
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B Using UNDERSTAND in GENESIS

This appendix discusses the use of the new semantic parser infrastructure which I added to GENESIS. It
shows how the UNDERSTAND program can be used to teach the semantic parser new examples, and how the

resulting new rules can be incorporated into GENESIS.

B.1 How to Train UNDERSTAND

Currently, training the semantic parser is not done within the GENESIS system itself, but instead in a separate

UNDERSTAND program.

In the Java software, the UNDERSTAND user interface is located in the executable class understand.GUI.

See Figures 2 and 3 for screenshots of this program.

The original UNDERSTAND paper[4] is a good reference for how to train using positive and negative examples.
The only changes I made to the user interface in this thesis are the addition of buttons for stepping the rule

engine, as described in Section 3.1.2.

To augment the current set of training examples, choose File>Open. .. and select the file

understand/rules.txt, which is the list of examples, as reproduced in Appendix A of this thesis.

We can then add new rules or refine old rules as described in the original UNDERSTAND paper. In doing so

we should follow the training discipline detailed in Section 2.2 of this thesis.

Currently the UNDERSTAND interface has no way to delete examples, so if we realize we don’t in fact want
to teach an example we just provided, we need to save the rules and then manually delete the example. To
do so, choose File>Save, use a text editor to remove the unwanted example from understand/rules.txt,

and then reload the examples with File>Open. ..

Lastly, when the training is complete and we want to see how the newly trained semantic parser works within

understand, we save the list of examples with File>Save.

We must also save a serialized copy of the semantic parse rules to the file understand/rules.ser.gz with
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File>Save Serialized.... This is the file that GENESIS actually reads, so that it doesn’t have to re-learn

from the examples every time it starts up.

B.2 How to Use UNDERSTAND in GENESIS

Once rules.ser.gz has been updated as in the previous section, the changes will be reflected on the next

launch of GENESIS’ executable Java class, piranha.Gauntlet.

UNDERSTAND is not currently the default semantic parser in GENESIS, however, so it must be selected from
the Parser menu. After this, any sentence processed by GENESIS will be sent through the updated semantic

parser.

Currently, the output of understand.Understand is wired into a

piranha.UnderstandProcessor, which in turn is wired into GENESIS (via a switchbox based on the selection
in the Parser menu). This UnderstandProcessor does two things. Firstly, it throws out any leftover,
‘raw’ syntactic structures, to reduce clutter in the GENESIS interface. Secondly, this is where the thread

modifications specified by any derived keywords (as described in Section 3.3) take place.

52



References

[1]

John R. Bender. Connecting language and vision using a conceptual semantics. Master’s thesis, MIT,

2001.

Boris Katz, Gary Borchardt, and Sue Felshin. Natural language annotations for question answering. In

Proceedings of the 19th International FLAIRS Conference (FLAIRS 2006), 2006.

Dan Klein and Christopher D. Manning. Fast exact inference with a factored model for natural language
parsing. In Advances in Neural Information Processing Systems 15 (NIPS 2002), pages 3-10. MIT Press,
2003.

Michael T. Klein. Understanding english with lattice-learning. Master’s thesis, MIT, 2008.

Adam Kraft. Learning, using examples, to translate phrases and sentences to meanings. Master’s thesis,

MIT, 2007.
George A. Miller. Wordnet 3.0, 2006. http://wordnet.princeton.edu/.

Lucia Vaina and Richard Greenblatt. The use of thread memory in amnesic aphasia and concept learning,

1979.

Patrick Winston. Learning Structural Descriptions from Ezamples. PhD thesis, MIT, 1970.

53



